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1. INTRODUCTION

Slab-beam steel bridges consist of a concrete deck spanning over steel stringers which can
have composite action with the deck concrete. An economical range of span for this type of
bridge can extend up to 15 m with rolled steel sections. Higher spans can be covered by
continuous construction. A typical plan view of a continuous skewed bridge is shown in
Figure 1. The cross-sectional view showing end cross-frames are shown in Figure 2. Figure
3 shows a typical elastomeric bearing detail. Details shown in Figures 2 and 3 are standard
in the state of Illinois [1].
The period of vibration and inertial forces induced in a bridge structure depend on the

sti!ness of supporting members, such as end-diaphragms and elastomeric bearings, in two
non-orthogonal directions. Inertial forces resulting from an earthquake are transferred from
the deck to cross-frames at the end of the span and then to the bearings. The cross-frames
a!ect the lateral sti!ness of the bridge in the direction of skew, and elastomeric bearings
a!ect the sti!ness of the bridge in the longitudinal direction.
In this paper, based on sti!ness of elastomeric bearings and cross-frames, the dynamic

behavior of symmetrical continuous skewed bridges will be studied. Equations for the
determination of the translational periods of free vibration will be derived. In addition,
correlation factors relating the periods of a straight bridge to those of a skewed bridge with
the same properties are derived.
It is assumed that the concrete deck is rigid in its own plane. Turkington et al. [2] claim

that this assumption is valid for decks with length-to-width (aspect) ratios of less than 8.
This is because the in-plane deck sti!ness is very high in comparison with cross-frame and
elastomeric bearing sti!nesses. Although the overall span of continuous bridges can be very
long, only the aspect ratio of each individual span will be the determining factor for deck
sti!ness. For slab-girder bridges, each span is limited by the economical range, and usually,
does not exceed 20 m.
Zahrai et al. [3] indicate that end-diaphragms, in the form of a single channel section

connecting the girders, perform poorly in earthquakes. This is due to their #exibility and
lack of connection to the lower part of the girder. Hence, the use of end cross-frames, as
shown in Figure 2, is recommended for bridges in seismic zones. In addition, they prove that
intermediate diaphragms do not a!ect the seismic behavior. In this paper, only the e!ect of
end-diaphragms in the form of cross-frames is considered.
Skewed bridges have vibrational modes that do not uncouple in orthogonal directions.

This means that, for a typical elastically supported skewed bridge as shown in Figure 1, the
translational modes of free vibration are not in theX or> directions. In fact, they are closer
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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Figure 1. Bridge plan view.
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to the N and ¹ directions, i.e., normal and tangent to the abutments. Currently, AASHTO
[4] proposes the use of the multimode spectral analysis method for bridges in which
coupling occurs in more than one of the three coordinate directions within each mode of
vibration. Linear dynamic analysis is also the minimum requirement for skewed bridges
according to ATC-32, section C3.21.4 [5]. In this paper, a simple method for obtaining the
translational periods of free vibration is given without resorting to complicated analysis.
The results are veri"ed using the SAP2000 [6] program and a three-dimensional "nite
element model. The behavior of single-span skewed bridges, supported elastically, has been
studied by Maleki [7, 8]. This is an extension of the work to cover continuous bridges.

2. FREE VIBRATION ANALYSIS

A typical symmetric continuous skewed slab-girder bridge, as shown in Figure 1, is
considered for analysis. The bulk of the mass in a slab-girder bridge is at the deck level. In
the event of an earthquake, the inertial loads will be generated at the deck. These forces have
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Figure 4. Bridge "nite element model.
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to pass through the end-diaphragms and bearings to reach the substructure and "nally the
ground. As a result, the sti!ness of all these components will a!ect the dynamic behavior of
the bridge. The in-plane sti!ness of the deck is very high in comparison with the
end-diaphragms and it is assumed to be rigid. This means that all points on the deck will
displace equally.
A skewed bridge is a parallelogram in plan. The center of mass is chosen as the origin and

two sets of axes are de"ned at this point. The X}> axes are in the longitudinal and
transverse directions, andN}¹ axes are normal and parallel to the supports. Note that, due
to symmetry, the center of mass and sti!ness coincide, and hence, translational loads at the
center of mass do not cause any torsional loading. This is true regardless of number of
spans, as long as, symmetry in geometry and support sti!ness is preserved.
A three-dimensional "nite element model of the bridge and the three degrees of freedom

(d.o.f.) at the center of mass are shown in Figure 4. The springs k
�
represent the sti!ness of

elastomeric bearing in the X direction, and springs k
�
represent the total lateral sti!ness of

the cross-frames in the ¹ direction. Let M and I
�
represent the total mass and the mass

moment of inertia of the bridge superstructure. These are assumed to be concentrated at the
center of mass. Assuming zero damping, the equation of motion for free vibration of the
model bridge in Figure 4 can be written as follows:

�
M 0 0

0 M 0

0 0 I
�
� �

u(
�

u(
�

u( �
�#�

K
��

K
��

K
��

K
��

K
��

K
��

K�� K�� K����
u
�
u
�
u��"�

0

0

0� , (1)

whereK
��

and K
��
are the summation of all transformed sti!ness in the X and > direction

respectively; K�� is derived from rotational equilibrium and it is equal to

K��"� (k
�
e�
�
#k

�
e�
�
), (2)

where &&e'' denotes the eccentricity of springs with respect to center of mass in a direction
perpendicular to the line of action of each spring. Other sti!ness terms are coupled terms.
The sti!ness matrix in equation (1) above is diagonal for a straight bridge and all the

non-diagonal terms are equal to zero. As a result, a non-skewed bridge will have its
fundamental mode of vibration in the X (or >) direction only. Ground motion in theX (or
>) direction would cause only lateral displacement in the X (or > ) direction. The bridge
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would experience no torsional motion unless the base motion includes rotation about
a vertical axis.
For a skewed bridge with center of mass and sti!ness coinciding, the torsional mode

uncouples, but the translational modes are coupled. Therefore,

K��"K
��"K��"K

��"0. (3)

The period of vibration for the uncoupled torsional mode is

¹"2��
I
�

K��
. (4)

This paper is mainly concerned with translational modes of vibration. To illustrate the
nature of the coupled translational modes of vibration, a simpli"ed model of the bridge can
be made with only two springs, K

�
and K

�
, and a mass, M, as shown in Figure 5. Spring

K
�
represents elastomer's total shear sti!ness in the X direction, and spring K

�
represents

cross-frame's total sti!ness in the ¹ direction. Transforming the local co-ordinates along
N- and ¹-axis of the K

�
spring to the global X and > co-ordinates the sti!ness terms in

equation (1) are

K
��

"K
�
#K

�
sin� �, K

��
"K

�
sin � cos �"K

��
, K

��
"K

�
cos� �. (5}7)

Solving the eigenvalue problem leads to periods of free vibration of the system:
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�
K

�
cos� �] . (8)

It is obvious that the periods of vibration are coupled and depend on both spring
sti!ness, K

�
and K

�
. For the case of a straight bridge �}is equal to zero and (8) reduces to
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, (9)

which are familiar uncoupled results as expected. Introducing a non-dimensional parameter
as �"K

�
/K

�
, equation (8) can be rewritten as

¹"�8��M/K
�
[(1#�)$�(1#�)�!4� cos� �]. (10)
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This is the exact equation for the period of vibration of a skewed bridge. Substituting zero
for parameter �, the period for a straight bridge is derived as

¹
�
"�8��M/K

�
[(1#�)$(1!�)] . (11)

Note that the elastomer's sti!ness is omni-directional. However, as the detail in
Figure 3 shows, the retainer plate prevents the displacement of the elastomer in any other
direction except the longitudinal direction. The retainer's sti!ness and elastomer's sti!ness
are like springs attached in parallel. The equivalent sti!ness is the sum of the two, and the
retainer being much sti!er actually dominates. Moreover, this combined sti!ness is in series
with abutment or pier sti!ness.
In the analytical models, all these springs were replaced with one spring (i.e., K

�
). This

shows the e!ect of the cross-frame, which is the dominant part for most bridges. However, if
one desires more accuracy, the sti!ness of substructure and retainer and all of the above can
be added to give an equivalent K

�
. In that case, the derived formulas are still valid.

Moreover, the inclusion of K
�
in the development of formulas is purely mathematical.

For continuous bridges, at least one end of the girder is pin supported. This will cause the
total sti!ness in the longitudinal direction to approach in"nity. Hence, the results for the
case of �"R should be used.
It should be noted that varying the geometry (span or width) of the bridge only changes

the mass, M, in the numerator of the above equations. The relationship between mass and
period is well known, and is not considered as a parameter in this study. The e!ects of other
parameters are explored in the next section.

3. CORRELATION BETWEEN SKEWED AND STRAIGHT BRIDGE PERIODS

To arrive at a correlation factor between the periods of a skewed bridge and a straight
bridge with similar properties, one can divide equation (10) by equation (11). Considering
the $ sign in the denominators, four factors are obtained as follows:

R
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R
�
"

¹

¹
�

"�[(1#�)!�(1!�)�]/[(1#�)#�(1#�)�!4� cos� �]. (15)

The function R
�
can be described as the ratio of the "rst period of a skewed bridge to the

second period of a straight bridge. Likewise, R
�
is the ratio of the "rst period of a skewed

bridge to the "rst period of a straight bridge, R
�
is the ratio of second periods, and R

�
is the

ratio of second period to "rst period.
Figures 6}9 are the plots of the above four correlation factors versus � respectively. In

addition, each graph shows the variation of skew angle from 0 to 603.
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Referring to Figure 6, the author has found that R
�
can be approximated with a good

accuracy with the functions

R
�
+��/cos � for �*10 and R

�
+1/�� cos � for �)0)10. (16, 17)

Compared to equation (12), the maximum error of these functions occur at �"0)1 or 10.
The maximum percentage of error ranges from 0)4%, for �"15, to 3)6% for �"60 at these
points. These errors reduce to zero when � approaches 1000 or 0)001. Hence, it is concluded
that equations (16) and (17) are in excellent agreement with the exact values in the speci"ed
� range. The range in equation (16) is the practical range of � for pinned bearings in the
longitudinal direction, and the range in equation (17) is applicable to elastomeric bearing
supports.
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Likewise, Figure 7 shows the relationship between the "rst periods. For practical ranges
of �, the function R

�
can be approximated with

R
�
+1/cos � for �)0)1, �*10; (18)

the maximum error for this approximation is 3)6%.
Refering to Figure 8, the function R

�
can be approximated with 3)6%maximum error as

R
�
+1 for �)0)1, �*10 (19)

and the function R
�
, in Figure 9, can be approximated, with 3)6% maximum error, as

R
�
+�1/� for �*10 and R

�
+�� for �)0)1 (20, 21)

which are actually the values of function R
�
when �"0, i.e., a straight bridge.
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For practical applications, the correlation factors R
�
and R

�
are simpler to use than

R
�
and R

�
, and cover all practical ranges of �. Having the "rst and second periods of

a straight bridge, one can arrive at the periods of a skewed bridge by multiplying them by
the corresponding factor. In the next section, these properties are examined further by
solving a numerical example and comparing the results with "nite element analysis.

4. NUMERICAL EXAMPLES

A two-span continuous skewed bridge as shown in Figure 1 is considered for analysis.
The periods of vibration based on the theoretical development in the previous sections and
estimates based on the correlation factors are calculated and compared here.
The mass of the bridge is estimated to be 130 000 kg. The lateral sti!ness of each

cross-frame, with detail as depicted in Figure 3, is found to be equal to 500 kN/mm. For
a two-span continuous bridge the sum of three cross-frame sti!ness is equal to
K

�
"1500 kN/mm. A typical shear sti!ness for an ordinary elastomeric bearing for this

bridge is 1)0 kN/mm. Hence, for 15 bearings a total sti!ness ofK
�
"15 kN/mm is assumed.

Note that this is only an assumption. In actual practice at least one set of bearings are
pinned; which increases the sti!ness to in"nity in the longitudinal direction. Using these
values, for a skew angle of �"60, the exact translational periods of vibration can be
obtained as

�"

K
�

K
�

"

15

1500
"0)01. (22)

Substituting this in equation (10) gives

¹ "�
8��M

K
�
[(1#�)$�(1#�)�!4� cos� �]

"�
10)26�10�

1)5�10�[1)01$(1)005)]
(23)

and upon simpli"cation,

¹
�
"1)174 and ¹

�
"0)0583 s, (24)

which are the two translational periods of vibration.
These same periods could have been estimated by using the correlation factors R

�
and

R
�
as given by equations (18) and (19). First, we calculate the uncoupled periods of a straight

bridge with the same properties from equation (9):

¹
��

"2��
M

K
�

"2��
130 000

15�10�
"0)585 s, ¹

��
"2��

M

K
�

" 2��
130 000

1)5�10�
" 0)0585 s.

(25, 26)

Then we apply the correlation factors to obtain the periods of skewed bridge as:

¹
�
"R

�
�¹

��
"�

1

cos �� (0)585)"1)170 s, ¹
�
"R

�
�¹

��
"(1)�0)0585�"0)0585 s.

(27, 28)

These are in good agreement with the exact values of equation (24). The results for other
skew angles are calculated and shown in Table 1.
To compare the estimated values derived above, with an actual "nite element model,

a three-dimensional model of the bridge is made with program SAP2000 [5], as shown in



TABLE 1

Free vibration periods comparison, elastomeric bearings

Analysis
method

Skew
angle

Total
K

�
(kN/mm)

Total
K

�
(kN/mm)

�"K
�
/K

�
Period
¹

�
(s)

Period
¹

�
(s)

SAP2000 0 15 1500 0)01 0)584 0)0584
Equation (10) 0)585 0)0585
R

�
and R

�
estimates 0)585 0)0585

SAP2000 15 15 1500 0)01 0)605 0)0584
Equation (10) 0)606 0)0585
R

�
and R

�
estimates 0)605 0)0585

SAP2000 30 15 1500 0)01 0)676 0)0584
Equation (10) 0)676 0)0584
R

�
and R

�
estimates 0)675 0)0585

SAP2000 45 15 1500 0)01 0)829 0)0583
Equation (10) 0)829 0)0583
R

�
and R

�
estimates 0)827 0)0585

SAP2000 60 15 1500 0)01 1)173 0)0582
Equation (10) 1)174 0)0583
R

�
and R

�
estimates 1)170 0)0585

TABLE 2

Free vibration periods comparison, pin supported condition

Analysis
method

Skew
angle

Total
K

�
(kN/mm)

Total
K

�
(kN/mm)

�"K
�
/K

�
Period
¹

�
(s)

Period
¹

�
(s)

SAP2000 0 1)5E6 1500 1000 0)0584 0)0018
Equation (10) 0)0585 0)0018
R

�
and R

�
estimates 0)0585 0)0018

SAP2000 15 1)5E6 1500 1000 0)0605 0)0018
Equation (10) 0)0605 0)0018
R

�
and R

�
estimates 0)0605 0)0018

SAP2000 30 1)5E6 1500 1000 0)0675 0)0018
Equation (10) 0)0675 0)0018
R

�
and R

�
estimates 0)0675 0)0018

SAP2000 45 1)5E6 1500 1000 0)0827 0)0018
Equation (10) 0)0827 0)0018
R

�
and R

�
estimates 0)0827 0)0018

SAP2000 60 1)5E6 1500 1000 0)117 0)0018
Equation (10) 0)117 0)0018
R

�
and R

�
estimates 0)117 0)0018
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Figure 4. The total mass of 130 000 kg is assumed to be distributed uniformly over the
concrete deck. The deck is modelled with shell elements of 0)19 m thickness. The girders are
W36�230 and are rigidly attached to the deck slab. All joints are constrained in the deck
slab plane to perform as a rigid diaphragm. The end of the girders are attached to
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longitudinal springs that represent the elastomeric bearing's shear sti!ness. There are also
springs in the transverse ¹ direction that simulate the sti!ness of the cross-frames. The
latter is modelled using the non-linear link elements of SAP2000. This is the only way one
can model skewed springs in the ¹ direction with this program. However, the non-linear
portion of the spring is not activated. Both of these springs are attached to the ground, i.e.,
the substructure is assumed to be rigid. Zero damping is assumed in the free vibration
analysis. The analyses results are shown in Table 1 and compared to previous values. In
addition, estimates of the translational periods using the R

�
and R

�
factors, described in the

previous section, are also given. It is clear that the simpli"ed model results are in excellent
agreement with the SAP2000 results. Hence, the validity of the theoretical development for
the periods of vibration is veri"ed. The slight discrepancy in some cases is due to the "nite
element model and can be eliminated with a "ner mesh.
As a second example, consider the free vibration analysis of a pin-supported skewed

bridge. An analysis is made which assumes a � value of 1000. This is very close to
a pin-supported condition for the bearing. For a pin-supported bridge, the K

�
spring, in

reality, represents the out-of-plane sti!ness of the abutment; this is due to in"nite sti!ness of
the hinged bearings.
The results are summarized in Table 2 and are in good agreement with theoretical

models. Note that, due to high sti!ness in the longitudinal direction, the second period is
very small.

5. CONCLUSIONS

For a symmetric continuous skewed bridge, supported on elastomeric bearings, and
having cross-frames at ends, this study concluded that the exact periods for translational
modes of vibration can be calculated from equation (10). These periods depend on
elastomer and cross-frame sti!ness and skew angle. The span or width of the bridge a!ects
the mass, and the square root of mass is proportional to period. Since the relationship is
well known, mass or span length has not been considered as a parameter in this study.
With the aid of correlation factors derived in this study, estimates of the translational

periods of a continuous skewed bridge can be obtained from the period of a straight bridge
with the same characteristics. The "rst period of a skewed bridge is obtained by dividing the
period of a straight bridge by the factor cos � as given by equation (18). The second period of
a skewed bridge is equal to that of a straight bridge as indicated by equation (19). It has been
shown that the estimates are in excellent agreement with exact values for practical ranges of
support sti!ness. The "ndings are valid regardless of the number of spans. However, the
limitation of symmetry in geometry and support sti!ness has to be satis"ed.
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